田世杰


1寸200K.jpg


姓 名:田世杰

职 称:副教授

办公室:信息工程学院112

邮 箱:sjtian@nwafu.edu.cn

            1050150294@qq.com


最新消息与进展

【4】2025.07 指导本科生闫某等发表《农业机械学报》学院B类、EI期刊论文

【3】2025.06 指导李某等7位本科生顺利毕业,其中薛某获院级优秀本科毕设,李某获校级优秀本科毕设

【2】2025.05 指导本科生徐某、马某等获批大学生创新创业训练计划项目,其中一项院级、一项国家级

【1】2025.05 本科生李某等在第十五届“挑战杯”陕汽集团陕西省大学生课外学术科技作品竞赛中获二等奖

【1】2025.03 博士生杨某等在西北农林科技大学第二届“教嫁杯”大学生创新创业竞赛中获一等奖


基本信息

个人简介

田世杰,男,中共党员,西北农林科技大学信息工程学院副教授,获批2024年陕西省“校招共用”引才用才项目,农业农村部农业物联网重点实验室、作物抗逆与高效生产全国重点实验室成员,Plant Phenomics期刊青年编委,Agronomy期刊Guest Editor2022年10月至2023年11月前往新西兰奥克兰大学进行联合培养,2024年3月博士毕业于浙江大学。主要从事图谱深度学习、多模态信息感知与智能决策、智能传感装备等智慧农业相关理论与应用研究,截止2025年7月发表SCI/EI收录论文35余篇,H指数15,I10指数16,其中一作论文11篇(2篇为校级G2高水平期刊论文)

教育经历

2020年9月-2024年3月,浙江大学,工学博士

2022年10月-2023年11月,UOA(University of Auckland),CSC资助联合培养

2017年9月-2020年6月,西北农林科技大学,工学硕士

2012年9月-2016年6月,西北农林科技大学,工学学士

工作经历

2024年4月-至今,西北农林科技大学信息工程学院,副教授

2016年8月-2017年7月,西北农林科技大学研究生支教团,陕西丹凤县支教教师

学术兼职

Plant Phenomics 期刊青年编委,Agronomy 期刊 Guest Editor

获奖和荣誉

2023年,浙江大学智能生物产业装备创新(IBE)团队学术故事奖

2022年,浙江大学优秀研究生、康而达奖学金、学院学术成果奖

2022年,浙江大学博士研究生国家奖学金

2022年,国家留学基金委(CSC)公派研究生项目奖学金

2022年,浙江大学智能生物产业装备创新(IBE)团队学术故事奖

2021年,浙江大学优秀研究生、三好研究生、优秀学生党务工作者

2021年,浙江大学智能生物产业装备创新(IBE)团队学术故事奖、优秀博士生奖

2019年,西北农林科技大学硕士研究生国家奖学金

2019年,农业工程学会学生优秀报告

2018年,中国研究生电子设计竞赛全国总决赛团队一等奖

2018年,西北农林科技大学优秀研究生

2017年,西北农林科技大学优秀研究生


研究方向

生物表型技术(包括但不局限于以下方向)

1. 生物高通量三维生理-表型信息的时空同步感知方法及关键装备

该研究涵盖了通过图谱技术同步捕捉并分析生物体(例如植物)在不同时间和空间尺度上的生理与表型信息。这一技术使我们能够实时观察到生物体的生长状况与病理变化,并以三维形式全面洞察生物体的健康状态。此外,图谱融合技术能够整合生物体的三维成像数据与其他生理数据(如叶绿素含量、营养元素等),进而深入解析生物体的多重生理状态。

2. 作物生理-表型-环境耦合的多参数生长模型构建

本研究致力于开发一种综合模型,该模型集成了作物的生理特征、表型表达及环境因素。借助此模型,我们能预测作物在不同环境条件下的生长表现,从而有助于作物品种的选育和高效种植。

3. 作物-土壤-环境协同调控技术与智能管理装备开发

该研究专注于运用智能控制、决策技术及智能设备,优化作物、土壤与环境的相互作用。通过智能化管理,实现对农业生产中各种因素(如灌溉、施肥等)的实时监控与调整,适应不断变化的环境条件,以提高作物的潜在最大产量。

果蔬产后商品化处理技术(包括但不局限于以下方向)

1. 光、声信息与果蔬产品互作机理、果蔬内部品质无损感知方法

该研究方向旨在利用光学和声振技术探测果蔬的内部品质。通过光谱分析,我们可以捕捉到果蔬内部理化相关的信息,如内部病害、糖度等,而声振技术可以探测到果蔬内部结构的变化,如硬度。结合这两种技术,可以实现对果蔬内部品质的全面无损检测。

2. 集成机械手和传感器的果蔬品质实时监测技术

本研究关注如何将精准的机械手臂与先进的传感器技术相结合,实现对果蔬品质的实时监控和自动处理。通过在机械手臂上安装传感器,可以在果蔬处理过程中实时监测其外部和内部品质。这项技术对提升现代农业生产线的自动化和智能化水平具有重要意义,有助于优化生产效率。

3. 果蔬高通量分选技术与智能决策系统研究

高通量分选技术利用自动化设备,结合机器视觉、光谱、机械自动化和智能算法,快速有效的对大量果蔬进行分拣和分类。该技术可以依据果蔬的大小、颜色、内部品质、内部缺陷等多个参数进行快速筛选。此外,智能决策系统可以根据收集到的实时数据,做出最优的处理和分拣决策,极大提升分拣效率和准确性。

细化方向、技术、算法可来办公室讨论


学生培养

课题组隶属于农业物联网重点实验室,特别欢迎各位同学加入!

研究领域具有多学科高度交叉的特点,欢迎有计算机科学与技术、农业工程、光学工程、控制工程、电子信息、机械工程、植物科学、智慧农业等专业背景的学生联系我攻读硕士、博士学位,(2026.09入学的硕士尚有保研、考研名额,欢迎联系!

热烈欢迎本科生来课题组交流并进行科研项目训练(可发邮件,也可来办公室面谈)。

课题组不强制要求科研时间、地点,但会定期召开组会交流科研进展,我也会一对一与学生交流近期学习和生活状态。

课题组可为表现良好者提供推荐,前往国内外著名高校(浙江大学、奥克兰大学、京都大学、华盛顿州立大学等)进行深造或联合培养。

求学期间科研与生活压力不容小觑,不希望课题组学生受到伤害,所以希望加入课题组的同学能够乐观开朗、善于沟通合作,能够愿意学习编程与算法。


科研项目

【5】陕西省自然科学基金“多元图谱XXXX”(2025.01-2026.12),主持;

【4】杨凌示范区科技计划项目“品种-生境互作下XXXXX”(2024.12-2026.11),主持;

【3】陕西省校招共用引才用才项目“设施果蔬XXXXXXXX”(2024.09-2027.09),主持;

【2】陕西省重点研发计划子课题“小麦逆境胁迫XXXXXX” (2024.10-2027.09),主持;

【1】西北农林科技大学博士科研启动费 “基于高光谱成像XXXX”(2024.05-2027.05) ,主持;


学术交流

2023年,中国农业机械学会60周年会庆暨2023年学术年会(云南昆明),报告

2022年,新西兰食品科学年会(新西兰但尼丁),报告

2019年,中国农业工程年会(浙江杭州),报告


代表性学术成果(论文与发明专利)

谷歌学术个人主页Shijie Tian,H指数15:https://scholar.google.com/citations?user=yYDVmrkAAAAJ&hl=en


(合作发表不列出):

[1] Z Wei, H Liu, J Xu, Y Li, J Hu*, S Tian*, 2024. Quality grading method for Pleurotus eryngii during postharvest storage based on hyperspectral imaging and multiple quality indicators. Food Control, 110763.  (JCR中科院一区)

2024年3月之前:

1. Guo, M.#, Tian, S.#(共一), Wang, W., Xie, L., Xu, H.*, Huang, K.*, 2024. Biomimetic leaves with immobilized catalase for machine learning-enabled validating fresh produce sanitation processes. Food Research International, 179, 114028. https://doi.org/10.1016/j.foodres.2024.114028 (JCR中科院一区,校G2)

2. Tian, S., Liu, W., Xu, H.*, 2023. Improving the prediction performance of soluble solids content (SSC) in kiwifruit by means of near-infrared spectroscopy using slope/bias correction and calibration updating. Food Research International, 170, 112988. https://doi.org/10.1016/j.foodres.2023.112988 (JCR中科院一区,校G2)

3. Tian, S., Wang, S., Xu, H.*, 2022. Early detection of freezing damage in oranges by online Vis/NIR transmission coupled with diameter correction method and deep 1D-CNN. Computers and Electronics in Agriculture 106638. https://doi.org/10.1016/j.compag.2021.106638 (JCR中科院一区)

4. Tian, S., Wang, J., Xu, H.*, 2022. Firmness measurement of kiwifruit using a self-designed device based on acoustic vibration technology. Postharvest Biology and Technology, 187, 111851. https://doi.org/10.1016/j.postharvbio.2022.111851 (JCR中科院一区)

5. Tian, S., Tian, H., Yang, Q., Xu, H.*, 2022. Internal quality assessment of kiwifruit by bulk optical properties and online transmission spectra. Food Control, 141, 109191. https://doi.org/10.1016/j.foodcont.2022.109191 (JCR中科院一区)

6. Tian, S., Qu, M., Xu, H.*, 2023. Establishment of evaluation criterion based on starch dyeing method and implementation of optical and acoustic techniques for postharvest determination of “HongYang” kiwifruit ripeness. European Journal of Agronomy, 142, 126682. https://doi.org/10.1016/j.eja.2022.126682 (JCR中科院一区)

7. Tian, S., Xu, H.*, 2022. Nondestructive methods for the quality assessment of fruits and vegetables considering their physical and biological variability. Food Engineering Reviews. https://doi.org/10.1007/s12393-021-09300-0 (JCR一区,中科院二区)

8. Tian, S., Xu, H.*, 2022. Mechanical-based and optical-based methods for nondestructive evaluation of fruit firmness. Food Reviews International. https://doi.org/10.1080/87559129.2021.2015376 (JCR一区,中科院二区)

9. Tian, S., Zhang, J., Zhang, Z., Zhao, J., Zhang, Z., Zhang, H.*, 2019. Effective modification through transmission Vis/NIR spectra affected by fruit size to improve the prediction of moldy apple core. Infrared Physics & Technology 100, 117-124. https://doi.org/10.1016/j.infrared.2019.05.015 (JCR中科院二区)

10. Tian, S., Zhang, M., Li, B., Zhang, Z., Zhao, J.*, Zhang, Z., Zhang, H., Hu, J.*, 2020. Measurement orientation compensation and comparison of transmission spectroscopy for online detection of moldy apple core. Infrared Physics & Technology 111. https://doi.org/10.1016/j.infrared.2020.103510 (JCR中科院二区)

11. 张海辉*, 田世杰, 马敏娟, 赵娟, 张军华, 张佐经. 考虑直径影响的苹果霉心病透射光谱修正及检测. 农业机械学报, 2019, 50(1):313-320. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20190135&flag=1 (EI权威期刊)

12. 徐惠荣*, 田世杰, 应义斌, 吴俊哲, 李麟. 一种用于套袋水果自动去袋的装置, 2022, 发明专利, CN202110661369.7.



1寸200K.jpg

Name:Shijie Tian

Title   :Associate Professor

OfficeRoom 112, College of Information Engineering

Email sjtian@nwafu.edu.cn

            1050150294@qq.com


Latest News and Updates

[2] July 2025: Guided undergraduate student Yan and others in publishing a paper in Transactions of the Chinese Society for Agricultural Machinery (an EI-indexed journal classified as Category B by the college).

[1] June 2025: Guided seven undergraduates to the successful completion of their graduation projects. Among them, Xue received the college-level Outstanding Undergraduate Thesis Award, and Li received the university-level Outstanding Undergraduate Thesis Award.


Basic Information

Personal profile

Shijie Tian, male and a member of the Communist Party of China, serves as an Associate Professor at the College of Information Engineering, Northwest A&F University. He is a recipient of Shaanxi Province's 2024 "University Recruitment-Shared Utilization" Talent Program and holds core membership in both the Key Laboratory of Agricultural Internet of Things (Ministry of Agriculture and Rural Affairs) and the National Key Laboratory of Crop Stress Resistance and High-Efficiency Production. Additionally, he acts as a Youth Editorial Board Member for Plant Phenomics and a Guest Editor for Agronomy. From October 2022 to November 2023, he undertook joint doctoral training at the University of Auckland, New Zealand, and earned his Ph.D. from Zhejiang University in March 2024. His research focuses on spectrum-image deep learning, multimodal information perception and intelligent decision-making, and intelligent sensing equipment for smart agriculture applications. As of July 2025, he has published over 35 SCI/EI-indexed papers, with an H-index of 15 and an I10-index of 16, including 11 first-author papers (two of which appeared in university-classified G2-tier high-impact journals).

Educational Background

Ph.D. in Engineering, Zhejiang University, September 2020-March 2024

Joint training at UOA (University of Auckland) funded by CSC, October 2022-November 2023

Master of Engineering, Northwest A&F University, September 2017-June 2020

Bachelor of Engineering, Northwest A&F University, September 2012-June 2016

Professional Experience

Associate Professor, College of Information Engineering, Northwest A&F University, April 2024-Present

Teaching staff, Shaanxi Danfeng County, August 2016-July 2017

Academic Positions

Tian Shijie serves as a Youth Editorial Board Member for Plant Phenomics and a Guest Editor for Agronomy

Awards and Honors

2023: Academic Story Award, IBE Team, Zhejiang University

2022: Outstanding Graduate Student, Kang Erda Scholarship, Academic Achievement Award, Zhejiang University

2022: National Scholarship for Ph.D. students, Zhejiang University

2022: CSC Scholarship for Ph.D. students studying abroad

2022: Academic Story Award, IBE Team, Zhejiang University

2021: Outstanding Graduate Student, Excellent Student Party Worker, Zhejiang University

2021: Academic Story Award, Outstanding doctoral student, IBE Team, Zhejiang University

2019: National Scholarship for Master's students, Northwest A&F University

2019: Excellent Student Report, Agricultural Engineering Society

2018: First Prize, National Final of the China Graduate Electronic Design Competition

2018: Outstanding Graduate Student, Northwest A&F University

2017: Outstanding Graduate Student, Northwest A&F University


Research Directions

Biological Phenotyping Technologies (including but not limited to)

1. High-throughput three-dimensional physiological-phenotypic information sensing methods and key equipment: This research includes synchronous capture and analysis of physiological and phenotypic information of organisms (e.g., plants) across different times and spatial scales using graph technology. This allows real-time observation of the growth and pathological changes in organisms, providing a comprehensive three-dimensional insight into their health.

2. Multi-parameter growth model construction coupled with crop physiology, phenotype, and environment: This study aims to develop an integrated model that incorporates the physiological traits, phenotypic expression, and environmental factors of crops. This model helps predict crop growth under various environmental conditions, aiding in crop selection and efficient cultivation.

3. Crop-soil-environment collaborative regulation techniques and smart management equipment development: The research focuses on using intelligent control, decision-making technologies, and smart devices to optimize the interactions between crops, soil, and environment. This intelligent management allows for real-time monitoring and adjustment of various agricultural production factors, such as irrigation and fertilization, adapting to changing environmental conditions to maximize potential crop yield.

Post-harvest Commercialization Technologies for Fruits and Vegetables (including but not limited to)

1. Interaction mechanisms between light/sound information and fruit and vegetable products, non-destructive internal quality sensing methods: This research direction aims to use optical and acoustic technologies to detect the internal quality of fruits and vegetables. Spectral analysis captures physicochemical information such as internal diseases and sugar content, while acoustic technology detects changes in the internal structure, such as hardness.

2. Real-time monitoring technology for fruit and vegetable quality integrating robotic arms and sensors: This study focuses on how to integrate precise robotic arms with advanced sensor technology to monitor and automatically process the quality of fruits and vegetables in real-time during handling.

3. High-throughput sorting technology and intelligent decision-making systems for fruits and vegetables: High-throughput sorting technology uses automated equipment combined with machine vision, spectroscopy, mechanical automation, and smart algorithms to quickly and effectively sort and classify large quantities of fruits and vegetables based on multiple parameters such as size, color, internal quality, and defects.

More technical and algorithmic details can be discussed in the office.


Student Training

Our group, part of the Key Laboratory of Agricultural Internet of Things, warmly welcomes students to join us!

We are open to students interested in pursuing master's or doctoral degrees and welcome undergraduates to engage in research projects within our group.

Our group offers flexibility in research time and location, holds regular meetings to discuss research progress, and I personally discuss academic and life conditions with students one-on-one.

Well-performing members may receive recommendations for further studies or joint training at prestigious universities at home and abroad, such as Zhejiang University, the University of Auckland, Kyoto University, and Washington State University.


Research Projects(projects as Principal Investigator)

[5] the Shaanxi Provincial Natural Science Foundation project "Multimodal Spectrum-Image XXXX" (Jan 2025-Dec 2026);

[4] the Yangling Demonstration Zone Science & Technology Plan project "Crop Variety-Habitat Interaction XXXX" (Dec 2024-Nov 2026);

[3] Shaanxi Province’s "University Recruitment-Shared Utilization" Talent Program project "Protected Horticulture XXXX" (Sep 2024-Sep 2027);

[2] the sub-project of Shaanxi Key R&D Program "Wheat Stress Resistance XXXX" (Oct 2024-Sep 2027);

[1] the Northwest A&F University Doctoral Startup Fund "Hyperspectral Imaging-Based XXXX" (May 2024-May 2027).


Academic exchange

2023: Presentation at the 60th Anniversary Celebration and 2023 Academic Annual Meeting of the Chinese Society of Agricultural Machinery (Kunming, Yunnan, China).

2022: Presentation at the New Zealand Food Science Annual Conference (Dunedin, New Zealand).

2019: Presentation at the Chinese Agricultural Engineering Annual Conference (Hangzhou, Zhejiang, China).


Representative Academic Achievements

Shijie Tian | H-index 15:  https://scholar.google.com/citations?user=yYDVmrkAAAAJ&hl=en


(not listed for collaborative publication) :

[1] Z Wei, H Liu, J Xu, Y Li, J Hu*, S Tian*, 2024. Quality grading method for Pleurotus eryngii during postharvest storage based on hyperspectral imaging and multiple quality indicators. Food Control, 110763.  (JCR中科院一区)

Before March 2024:

1. Guo, M.#, Tian, S.#, Wang, W., Xie, L., Xu, H.*, Huang, K.*, 2024. Biomimetic leaves with immobilized catalase for machine learning-enabled validating fresh produce sanitation processes. Food Research International, 179, 114028. https://doi.org/10.1016/j.foodres.2024.114028

2. Tian, S., Liu, W., Xu, H.*, 2023. Improving the prediction performance of soluble solids content (SSC) in kiwifruit by means of near-infrared spectroscopy using slope/bias correction and calibration updating. Food Research International, 170, 112988. https://doi.org/10.1016/j.foodres.2023.112988

3. Tian, S., Wang, S., Xu, H.*, 2022. Early detection of freezing damage in oranges by online Vis/NIR transmission coupled with diameter correction method and deep 1D-CNN. Computers and Electronics in Agriculture 106638. https://doi.org/10.1016/j.compag.2021.106638

4. Tian, S., Wang, J., Xu, H.*, 2022. Firmness measurement of kiwifruit using a self-designed device based on acoustic vibration technology. Postharvest Biology and Technology, 187, 111851. https://doi.org/10.1016/j.postharvbio.2022.111851

5. Tian, S., Tian, H., Yang, Q., Xu, H.*, 2022. Internal quality assessment of kiwifruit by bulk optical properties and online transmission spectra. Food Control, 141, 109191. https://doi.org/10.1016/j.foodcont.2022.109191

6. Tian, S., Qu, M., Xu, H.*, 2023. Establishment of evaluation criterion based on starch dyeing method and implementation of optical and acoustic techniques for postharvest determination of “HongYang” kiwifruit ripeness. European Journal of Agronomy, 142, 126682. https://doi.org/10.1016/j.eja.2022.126682

7. Tian, S., Xu, H.*, 2022. Nondestructive methods for the quality assessment of fruits and vegetables considering their physical and biological variability. Food Engineering Reviews. https://doi.org/10.1007/s12393-021-09300-0

8. Tian, S., Xu, H.*, 2022. Mechanical-based and optical-based methods for nondestructive evaluation of fruit firmness. Food Reviews International. https://doi.org/10.1080/87559129.2021.2015376

9. Tian, S., Zhang, J., Zhang, Z., Zhao, J., Zhang, Z., Zhang, H.*, 2019. Effective modification through transmission Vis/NIR spectra affected by fruit size to improve the prediction of moldy apple core. Infrared Physics & Technology 100, 117-124. https://doi.org/10.1016/j.infrared.2019.05.015

10. Tian, S., Zhang, M., Li, B., Zhang, Z., Zhao, J.*, Zhang, Z., Zhang, H., Hu, J.*, 2020. Measurement orientation compensation and comparison of transmission spectroscopy for online detection of moldy apple core. Infrared Physics & Technology 111. https://doi.org/10.1016/j.infrared.2020.103510

11. 张海辉*, 田世杰, 马敏娟, 赵娟, 张军华, 张佐经. 考虑直径影响的苹果霉心病透射光谱修正及检测. 农业机械学报, 2019, 50(1):313-320. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20190135&flag=1

12. Xu Huirong*, Tian Shijie, Ying Yibin, Wu Junzhe, Li Lin. A Device for Automatically Removing Bags from Bagged Fruit, 2022, Invention Patent, CN202110661369.7.