|
姓 名:樊俐彤 职 称:讲师 办公室:404-1 电 话: 邮 箱:fanlitong@nwafu.edu.cn |
基本信息
樊俐彤,内蒙古巴彦淖尔人,2024年毕业于西北工业大学,获工学博士学位,师从王震教授、于登秀教授。一直从事演化博弈论、强化学习、最优控制理论等相关的研究,在多智能体博弈合作行为促进、连续策略博弈策略求解、博弈行为引导等方面取得系列研究成果,在IEEE Transactions on Neural Networks and Learning Systems、IEEE/CAA Journal of Automatica Sinica、IEEE Transactions on Computational Social Systems、Nonlinear Dynamics、Chaos等知名期刊上发表论文6篇。参与多项国家级项目,如国家杰出青年基金项目、国家重点研发计划科技创新2030-“新一代人工智能”重大项目子课题、国家自然科学基金面上项目及军口项目。 |
研究方向
演化博弈论、群体智能、强化学习、最优控制 |
开设课程
《人工智能导论》 |
学术成果
[1]Fan L, Song Z, Wang L, et al. Incorporating Social Payoff into Reinforcement Learning Promotes Cooperation[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2022,32, 123140. [2]Fan L, Yu D, Kang Hao Cheong and Wang Z. Optimal Evolution Strategy for Continuous Strategy Games on Complex Networks via Reinforcement Learning [J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 36(7), 12827 - 12839. [3]Fan L, Yu D and Wang Z. Integral-Reinforcement-Learning-Based Hierarchical Optimal Evolutionary Strategy for Continuous Action Social Dilemma Games [J]. IEEE Transactions on Computational Social Systems, 2024, 11(5):6807-6818. [4]Fan L, Guo H, Yu D, Xu B, Wang Z. Driving Key Nodes to Learn Cooperation in Social Dilemma[J]. Nonlinear Dynamics, 2025, 113, 4861-4875. [5]Wang L, Fan L, Zhang L, et al. Synergistic Effects of Adaptive Reward and Reinforcement Learning Rules on Cooperation[J]. New Journal of Physics, 2023, 25(7): 073008. [6] Dengxiu Yu*, Haojing Li, Litong Fan, Zhen Wang, Xuelong Li. Searching Positive-Incentive Noise from Optimal Consensus in Continuous Action Iterated Dilemma [J].IEEE/CAA Journal of Automatica Sinica, accept. [7] 王震; 严利; 樊俐彤; 卢润田; 唐艺洋; 于登秀. 一种分层社会困境的解决方法及装置. 专利号:CN202410097434.1 |
在读学生
毕业学生